Members
Principal Investigator
Postdoctoral Researchers
Graduate Students
Dislocation dynamics and vacancy diffusion in refractory metals and multi-principal element alloys.
Dislocation dynamics and strengthening mechanisms in single phase BCC and dual phase BCC-B2 refractory multi-principal element alloys.
Thermo-mechanical constitutive modeling and defect-mediated mechanical behavior.
Magneto-structural coupling effects, defect structures, and mechanical properties of intermetallic materials.
Investigating the origins of fatigue damage in polycrystalline nickel-based superalloys by studying intragranular deformation via coupled simulations and experiments.
My research entails performing micromechanical calculations of Ni-based superalloys under fatigue loading conditions, which will lead to a better understanding of the strongly coupled and local microstructure-mechanical conditions that first trigger material failure.
The role of slip localization in cyclic fatigue using discrete slip band crystal plasticity modeling.
Undergraduate Students
Focused on thermo-mechanical constitutive modeling and defect-mediated mechanical behavior.
Alumni
Modeling the Development and Transmission of Slip Bands in Polycrystalline Materials
Role of crystal orientation and void location on void growth in polycrystalline metals
Investigating intragranular deformation behavior of polycrystalline nickel-base superalloys using crystal plasticity finite element method (CPFEM).
Microstructure-based modeling of Ni-base superalloys, cyberinfrastructure for structural materials informatics, and non-destructive evaluation
Employing multi-scale computational models, encompassing first-principle calculations, atomistic simulations, phase-field dislocation dynamics, and FFT-based crystal plasticity models, in order to investigate the deformation mechanisms exhibited by pure metals, magnesium alloys, and high-entropy alloys
Crystal plasticity modeling to understand interactions between slip and deformation twinning in hexagonal close packed alloys
Dislocation Morphology and Mobility on the Slip Planes of Hexagonal Close-Packed Materials
Mapping of crystallographic geometrically necessary dislocation densities using three-dimensional microstructural data with varied processing histories
Multi-scale materials modeling in chemically and structurally complex materials such as multi-principal element alloys and metallic nanolaminates